Show Order Info
SKU:PA2296
Clonality:Polyclonal
Application:WB
Price: $200.00
Quantity:
Technical
Specs
Kit
Components
Gene
Information
Application
Data & Images
Reviews
Publications
FAQs

Overview

Product Name Anti-Kv1.1 Potassium Channel Antibody
Description Rabbit IgG polyclonal antibody for Potassium voltage-gated channel subfamily A member 1(KCNA1) detection. Tested with WB in Human;Mouse;Rat.
Cite This Product Anti-Kv1.1 Potassium Channel Antibody (Boster Biological Technology, Pleasanton CA, USA, Catalog # PA2296)
Replacement Item This antibody may replace the following items: sc-11182|sc-11184|sc-25680 from Santa Cruz Biotechnology.
Host Rabbit
Isotype N/A
Validated Species Human, Mouse, Rat
Application WB

*Our Boster Guarantee covers the use of this product in the above tested applications.

**For positive and negative control design, consult "Tissue specificity" under Protein Target Info.

Recommended Detection Systems Boster recommends Enhanced Chemiluminescent Kit with anti-Rabbit IgG (EK1002) for Western blot.
*Blocking peptide can be purchased at $50. Contact us for more information
**Boster also offers various secondary antibodies for Immunoflourescecne and IHC. Take advantage of the buy 1 primary antibody get 1 secondary antibody for free promotion for the entire year 2017!
Immunogen A synthetic peptide corresponding to a sequence at the C-terminus of human Kv1.1 potassium channel(465-481aa IAHYRQVNIRTANCTTA), different from the related mouse sequence by two amino acids, and from the related rat sequence by four amino acids .
Cross Reactivity No cross reactivity with other proteins
Pack Size 100μg/vial

Properties

Clonality Polyclonal
Form Lyophilized
Contents Each vial contains 5mg BSA, 0.9mg NaCl, 0.2mg Na2HPO4, 0.05mg Thimerosal, 0.05mg NaN3.
*carrier free antibody available upon request.
Concentration Add 0.2ml of distilled water will yield a concentration of 500ug/ml.
Storage At -20˚C for one year. After reconstitution, at 4˚C for one month. It can also be aliquotted and stored frozen at -20˚C for a longer time.Avoid repeated freezing and thawing.
Purification Immunogen affinity purified.
Isotype N/A

Protein Target Info (Source: Uniprot.org)

You can check the tissue specificity below for information on selecting positive and negative control.

Gene Name KCNA1
Protein Name Potassium voltage-gated channel subfamily A member 1
Molecular Weight 56466 MW
Protein Function Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the kidney (PubMed:19903818). Contributes to the regulation of the membrane potential and nerve signaling, and prevents neuronal hyperexcitability (PubMed:17156368). Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane (PubMed:19912772). Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, KCNA6, KCNA7, and possibly other family members as well; channel properties depend on the type of alpha subunits that are part of the channel (PubMed:12077175, PubMed:17156368). Channel properties are modulated by cytoplasmic beta subunits that regulate the subcellular location of the alpha subunits and promote rapid inactivation of delayed rectifier potassium channels (PubMed:12077175, PubMed:17156368). In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Homotetrameric KCNA1 forms a delayed-rectifier potassium channel that opens in response to membrane depolarization, followed by slow spontaneous channel closure (PubMed:19912772, PubMed:19968958, PubMed:19307729, PubMed:19903818). In contrast, a heterotetrameric channel formed by KCNA1 and KCNA4 shows rapid inactivation (PubMed:17156368). Regulates neuronal excitability in hippocampus, especially in mossy fibers and medial perforant path axons, preventing neuronal hyperexcitability. Response to toxins that are selective for KCNA1, respectively for KCNA2, suggests that heteromeric potassium channels composed of both KCNA1 and KCNA2 play a role in pacemaking and regulate the output of deep cerebellar nuclear neurons (By similarity). May function as down- stream effector for G protein-coupled receptors and inhibit GABAergic inputs to basolateral amygdala neurons (By similarity). May contribute to the regulation of neurotransmitter release, such as gamma-aminobutyric acid (GABA) release (By similarity). Plays a role in regulating the generation of action potentials and preventing hyperexcitability in myelinated axons of the vagus nerve, and thereby contributes to the regulation of heart contraction (By similarity). Required for normal neuromuscular responses (PubMed:11026449, PubMed:17136396). Regulates the frequency of neuronal action potential firing in response to mechanical stimuli, and plays a role in the perception of pain caused by mechanical stimuli, but does not play a role in the perception of pain due to heat stimuli (By similarity). Required for normal responses to auditory stimuli and precise location of sound sources, but not for sound perception (By similarity). The use of toxins that block specific channels suggest that it contributes to the regulation of the axonal release of the neurotransmitter dopamine (By similarity). Required for normal postnatal brain development and normal proliferation of neuronal precursor cells in the brain (By similarity). Plays a role in the reabsorption of Mg(2+) in the distal convoluted tubules in the kidney and in magnesium ion homeostasis, probably via its effect on the membrane potential (PubMed:23903368, PubMed:19307729). .
Tissue Specificity Detected adjacent to nodes of Ranvier in juxtaparanodal zones in spinal cord nerve fibers, but also in paranodal regions in some myelinated spinal cord axons (at protein level) (PubMed:11086297). Detected in the islet of Langerhans (PubMed:21483673). .
Subcellular Localization Cell membrane ; Multi- pass membrane protein . Membrane . Cell projection, axon . Cytoplasmic vesicle . Perikaryon . Endoplasmic reticulum . Cell projection, dendrite . Cell junction . Cell junction, synapse . Cell junction, synapse, presynaptic cell membrane . Homotetrameric KCNA1 is primarily located in the endoplasmic reticulum. Interaction with KCNA2 and KCNAB2 or with KCNA4 and KCNAB2 promotes expression at the cell membrane (By similarity). Detected at axon terminals (By similarity). .
Uniprot ID Q09470
Alternative Names Potassium voltage-gated channel subfamily A member 1;Voltage-gated K(+) channel HuKI ;Voltage-gated potassium channel HBK1 ;Voltage-gated potassium channel subunit Kv1.1;KCNA1;
Research Areas |neuroscience|neurotransmission|receptors / channels|potassium channels| neuroscience|neurology process|neurodegenerative disease|
*if product is indicated to react with multiple species, protein info is based on the human gene.

Background for Potassium voltage-gated channel subfamily A member 1

Potassium voltage-gated channel subfamily A member 1, also known as Kv1.1, is a shaker related voltage-gated potassium channel that in humans is encoded by the KCNA1 gene. It is mapped to 12p13.32. The protein functions as a potassium selective channel through which the potassium ion may pass through in consensus with the electrochemical gradient. The N-terminus of the channel is associated with beta subunits that can modify the inactivation properties of the channel as well as affect expression levels. The C-terminus of the channel is complexed to a PDZ domain protein that is responsible for channel targeting.

Anti-Kv1.1 Potassium Channel Antibody Images

Click the images to enlarge.

Anti-Kv1.1 Potassium Channel Antibody
Anti-Kv1.1 potassium channel antibody, PA2296, All Western blotting
All lanes: Anti-KCNA1(PA2296) at 0.5ug/ml
Lane 1: Rat Brain Tissue Lysate at 40ug
Lane 2: Rat Testis Tissue Lysate at 40ug
Lane 3: Rat Cardiac Muscle Tissue Lysate at 40ug
Lane 4: HELA Whole Cell Lysate at 40ug
Lane 5: U87 Whole Cell Lysate at 40ug
Lane 6: SHG Whole Cell Lysate at 40ug
Lane 7: NEURO Whole Cell Lysate at 40ug
Predicted bind size: 56KD
Observed bind size: 56KD
Write a review for PA2296

FAQs

Q: Do you offer BSA-free antibodies? Keyword: Bovine serum albumin, carrier protein, conjugation
A: Yes, please contact us at support@bosterbio.com for more information about BSA-free antibodies and availability. The new BSA-free formula uses trehalose as a replacement to BSA. We have tested many alternative chemicals and found that trehalose protects the antibodies the best.
Q: Is your western blot protocol provided from the website applicable for all your antibodies? Keyword: applications, WB
A: The protocol is applicable for all our antibodies in WB, the NC Membrane(0.45μm or 0.22μm) and transfer time(70 mins or 50 mins) depends on the protein molecular weight, details can be found in included protocol.
Q: Can I conjugate markers to this antibody? Can I link custom conjugates to this antibody? Keyword: conjugation
A: The antibody is stored with BSA and cannot be conjugated with markers. Carrier free antibodies are available upon request. Please contact support@bosterbio.com
Q: What should I use for negative control?
A: Please contact us for negative control suggestions. You can also check expression databases such as genecards, uniprot etc. Due to logistic reasons, we do not sell serum or lysates that we use internally for positive or negative control.
Q: Where can I find troubleshooting information? What should I do if I have unexpected bands, high background, no signal, weak signal
A: You can find Boster's troubleshoot guides under tech support tab. Please contact us for further assistance on troubleshooting your experiment.
Q: What is the immunogen sequence of this antibody? Is this antibody polyclonal or monoclonal?
A: You can find the immunogen sequence under "Immunogen" and clonality in the product name.
Q: What is the expected band size? Why is it different than the observed band size?
A: The expected band size is predicted on the size of the protein. The actual band size may be affected by a few other factors including but not limited to:
1. Post-translational modification:phosphorylation, methylation, glycosylation etc. These modifications prevent SDS molecules from binding to the target protein and thus make the band size appear larger than expected
2. Post-translational cleavage: this can cause smaller bands and or multiple bands

3. Alternative splicing: the same gene can have alternative splicing patterns generating different size proteins, all with reactivities to the antibody.

4. Amino Acid R chain charge: SDS binds to positive charges. The different size and charge of the Amino Acid side chains can affect the amount of SDS binding and thus affect the observed band size.
5. Multimers: Multimers are usually broken up in reducing conditions. However if the interactions between the multimers are strong, the band may appear higher.,
Q: What is the suggested dilution ratio for Western Blot (WB), Immunohistochemistry (IHC) and or ELISA standards? What is the optimal pH for the sample?
A: Check the datasheet for the product for details on dilution ratios for different experiments. You can find the datasheet button on the right side of the product page.
Q: What is the protocol you used for your Western blotting (WB) and Immunohistochemistry (IHC)?
A: Check our protocols under the tech support tab.